"An overview of wheat transformation at Kansas State University"

Harold N. Trick

Department of Plant Pathology, Kansas State University Manhattan, Kansas, USA

Why Transform Wheat?

- ✓ Trait introduction for sexual incompatible sources
- ✓ Over-expression of transgene
- ✓ Tissue/organ localized trait expression
- ✓ Knockout phenotype (gene silencing)
- ✓ Gene pyramid (single breeding locus)

Public acceptance is needed before deployment

Validation of candidate genes

Plant Recovery

Starting Material

Regeneration MSE Tissue culture

Development MSP

Proliferation

Induction CM4

Tissue culture response of select hard winter vs. Bobwhite

Cultivar or	Callus formation	Plant regeneration
germplasm	(%)	(%)
KS920866-B-7	92.3	151.9 🗲
KS920709-B-5-2	96.3	124.1 🗲
KS85WGRC01	51.0	31.4
KS89WGRC04	82.7	119.2 🗲
2137	54.7	39.6
2163	51.0	25.5
Jagger	70.6	152.9 🗲
Karl 92	74.0	40.0
Larned	46.3	9.3
Stanof	75.5	26.4
TAM 107	54.6	65.5
Tomahawk	86.0	126.0
Bobwhite	92.0	82.5

Germination

Wheat Transformation

Development

Proliferation

5 mg/L and 10 mg/L ammonium glufosinate

T₀ Plant Preliminary screening

Wheat transformation timeline:

- plant seeds for immature embryo production (~ -60 to 120 da.)
 (plant 5 pots with 3-4 seeds/pot)
- **Day 0:** Harvest immature embryos (10-14 post anthesis) plate and initiate on CM4 media for 2-7 days
- Day 7: Select for embryogenic calli, bombard, then recover
- Day 10-12: Transfer to CM4 + 5 mg/ml glufosinate (G) for 2 wks
- Week 3: Transfer to CM4 + 10 mg/ml G (2 wks)
- Week 5: Transfer to CM4 + 10 mg/ml G (2wks)
- Week 7: Transfer to MSP + 10 mg/ml G and to light (2wks)
- Weeks 8-16: Transfer to MSE+ 5 G (tubes) for shot elongation and rooting)

Wheat transformation timeline (cont.):

- Weeks 8-16: Transfer to MSE+ 5 G (tubes) for shot elongation and rooting)
 - Weeks 9-20(+): Transfer to soil (peat pots) and condition to lower RH
 - Week 12- : Transfer to one gallon pot
 - Week 13-14: Paint with Liberty (3-5 leaf-stage)
 - Week 14-: DNA sampling for PCR analysis

- Wook 20- 1: Harvost T, sood

Total time from bombardment:

5- 7 months (Spring wheat) 6-9 months (Winter wheat)

Transformation capacity

Year	Constructs	Events
2008	47	327
2009	23	167
2010	22	75
2011	16	126

Spring

Bobwhite
Fielder
Lalbahadur
Giza 164
Chinese spring

Durham Ofanto Belzer Ben Maier

Winter
Jagger
Fuller
WGRC42
Molly
Overly
Heyne
Karl92
LR34

Past and current wheat transformation projects

- FHB^{1,2}
- WSMV resistance¹
- TriMV resistance¹
- Leaf rust resistance^{1,2}
- Stem rust¹
- Hessian Fly resistance^{1,2}
- Greenbug tolerance^{1,2}
- Lesion nematode resistance¹

- Al tolerance²
- Heat stress¹
- Value-added projects
 - cellulosic ethanol¹
 - zein protein expr.¹
- Gene validations^{1,2}

¹On-campus collaboration; ²Off-campus collaboration

FHB resistance is enhanced in transgenic wheat expressing the *Arabidopsis thaliana* defense regulatory *NPR1* gene

Makandar et al. Mol Plant-Microbe Interact 2006, 19:123–129

FHB severity is enhanced in plants expressing the *NahG* gene, which encodes a salicylic acid degrading enzyme

NPR1-conferred FHB resistance is attenuated when NahG is co-expressed

FHB resistance is enhanced in transgenic wheat expressing the *Arabidopsis thaliana PAD4* and *WRKY18* genes

FHB resistance is enhanced in transgenic wheat expressing a RNAi construct for silencing expression of a gene that encodes a lipid oxidizing enzyme

WSMV/TriMV Resistance

ELISA Results- T₃ Generation WSMV-CP

WSMV resistance is currently being crossed into Overly

Current Team Members:

Hyeonju Lee, research assistant Dehlia McAfee, research assistant Jessica Rupp, PhD student Dr. John P. Fellers, USDA-ARS Jyoti Shah, UNT

Previous Lab Members:

Dr. Marcy Main, DVM, research assistant Juliane Essig, research assistant Sheila Stevens, research assistant Melissa Wohler, research assistant Luisa Cruz, MS student

